www.a2zpapers.com

Class - BA/B.Sc. III Sem. VI Subject -Mathematics

Paper-II (Numerical Analysis)
Time Allowed: 3 Hours
Maximum Marks : 50
Note:(1) Alempt any five questions selecting atleast two frongars section.
(2) Students can use Non-Programmable Scientific Calculator.

${ }^{-}$SECTION-A

1. (a) Differentiate betneen-absolute error and relative error.
(b) Use Crout's Method to solve $3 x_{1}+2 x_{2}+7 x_{3}=4$ $2 x_{1}+3 x_{2}+x_{3}=5$ $3 x_{1}+4 x_{2}+x_{3}=7$
2. (a) Use Bisection Method to obtair (a) oot of the following equation correct to three decinal places $x^{3}+x^{2}+x+7=0$.
(b) Define factorial and prove that $\Delta[x]^{n}=n[x]<-15$
3. (a) Discuss the convergence of Newton Raphison Method.
(b) Obtain the function whose first difference is $9 x^{2}+11 x+5$.

5,5
4. (a) If $u=3 V^{\top}-6 v$, find the percentage error in u at $v=1$, if the error in v is 0.05 .
Solve $5 x_{1}+2 x_{2}+x_{3}=12$

$$
x_{1}+4 x_{2}+2 x_{3}=15
$$

$$
x_{1}+2 x_{2}+5 x_{3}=20 \text { using Jacobi's Method. }
$$

www . a 2 zpapers. बemon-B

5. (a) Find $\log _{10} 301$ for certain corresponding values oi x and $\log _{10} x$ are $(300,2.4771),(304,2.4829)$, (305 2.4843) and ($307,2.4871$) by using Lagrange's Interpolation formula.
(b) Describe Stirling formula.
6. (a) Evaluate $\int_{0}^{1} \frac{d x}{x+1}$ correct to three decimal places by

Trapezoidal Rule with $\mathrm{h}=0.125$.
(b) App(0.b) Gaussian, Integration formula when $n=2$ to evaluate $\frac{a^{d x}}{b^{x}+1}$
7. (a) Evaluate the integrait $\Rightarrow \int^{1}\left(1-x^{2}\right)^{3 / 2} \cos x d x$ by using Gauss Chebyshevon point, two point rules.
(b) Find the divided differences of varipos order for the data in the table below:

$x:$	-3	-1	0	3	5
$f(x):$	-30	-22	-12	330	3458

5,5
8. (a) Find the cubic Polynomial which takes the following values:

Hence obtain $y(4)$.
(b) Evaluate $\log \mathrm{e}^{2}$ from $\int_{0}^{1} \frac{\mathrm{x}}{1+\mathrm{x}^{2}} \mathrm{dx}$ using
-simpson's $1 / 3$ rule by dividing the range of ingegsation into four parts. Find error also. 5,5 2

